Setup Local Pytorch
本地建设pytorch环境
1. 安装miniconda
可以使用pycharm自动安装,也可以手动安装.
检查是不是有jupyter notebook 和 jupyter lab
如果上面的都ok,那么就可以安装pytorch了.
2. 创建一个新的conda环境
conda create -n torch-gpu python=3.9
conda activate torch-gpu
3. 安装pytorch
到官网下载pytorch的安装命令 https://pytorch.org/ 可以是conda/pip的命令
4. 将kernel注册到jupyter lab
conda install ipykernel
sudo python -m ipykernel install --name=torch-gpu
5. 打开jupyter lab
jupyter lab
6. 测试pytorch (apple silicon m1)
选取注册的kernel,然后运行代码:
test1.py
import torch
import math
# this ensures that the current MacOS version is at least 12.3+
print(torch.backends.mps.is_available())
# this ensures that the current current PyTorch installation was built with MPS activated.
print(torch.backends.mps.is_built())
test2.py
dtype = torch.float
device = torch.device("mps")
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')